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Abstract: This study aimed to model the performance indices of deep bed drying of rough rice using artificial neural 
networks (ANNs), compare the ANN approach to the multivariate regression method, and determine the sensitivity of 
the ANN model to the input variables. The effects of air temperature, air velocity, and air relative humidity on drying 
kinetics, product output rate (POR), evaporation rate (ER), and percentage of kernel cracking (KC) were investigated. To 
predict the dependent parameters, 3 well-known networks, namely the multilayer perceptron, generalized feed forward 
(GFF), and modular neural network, were examined. The GFF networks with the Levenberg–Marquardt learning 
algorithm, hyperbolic tangent activation function, and 4-15-1, 3-4-4-1, 3-7-1, and 3-11-1 topologies provided superior 
results, respectively, for predicting moisture content, POR, ER, and CK. The values of all of the drying indices predicted 
by the ANN were closer to the experimental data than linear and logarithmic regression models. The output variables 
were significantly affected by the dependent variables. However, air temperature and air relative humidity showed the 
maximum and the minimum influence on the network outputs, respectively.
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Introduction
Rice (Oryza sativa L.) is one of the most consumed 
crops and the main staple food for more than half of 
the world’s population. Depending on the harvesting 
method, the variety, the number of cuttings, and 
the growth location, harvested rough rice may have 
an average moisture content ranging from 16% to 
28% (wb) (Brooker et al. 1992). It has been proven 
that harvesting rough rice at high levels of moisture 
content will maximize its head yield (Brooker et al. 
1992). Therefore, an appropriate drying process is 
essential in order to prevent insect infestation and 
spoilage of rice grain (Cihan et al. 2002).

Drying is a complicated process involving 
simultaneous heat and mass transfer phenomena, 
which depend on various factors such as temperature, 
velocity, relative humidity and pressure of the air, 
physical nature and initial moisture content of 
the drying material, and the dryer’s exposed area 
(Akpinar et al. 2003; Movagharnejad and Nikzad 
2007). In order to design, simulate, control, and 
optimize the drying process for achieving the best 
product quality, it is important to know the drying 
behavior (Senadeera et al. 2003).

Many researchers have studied the drying 
process of grains and foods and have developed 
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several models to simulate this important unit 
operation (Akpinar et al. 2003; Senadeera et al. 2003; 
Doymaz 2006; Wang et al. 2007; Scala and Crapiste 
2008). These models fall into 3 categories, namely 
theoretical, semitheoretical, and empirical models. 
Both empirical and semitheoretical models are 
only valid for the certain ranges of temperature, air 
velocity, and humidity for which they are developed. 
Therefore, they cannot be used as a general correlation 
for a vast range of drying parameters. Furthermore, 
they are often used for thin layer drying of products, 
mostly fruit slices, while commercial grain dryers 
commonly work in deep bed mode. For this mode, 
the theoretical models are used, which are generally 
solutions of partial differential equations obtained 
from the heat and mass balance. However, the results 
are usually complicated and, consequently, require 
some assumptions that do not match the real drying 
systems.

The artificial neural network (ANN), as a data-
processing system inspired by biological neural 
systems, is a generalized mathematical model for 
human perception and is a well-known tool for solving 
complex and nonlinear problems (De Baerdemaeker 
and Hashimoto 1994; Liu et al. 2007; Bayat et al. 
2008). ANNs, in an appropriate form, can also provide 
reasonable solutions in the event of technological 
faults (Lin and Lee 1995). An ANN has the ability of 
relearning to improve its performance if new data are 
available (Hertz et al. 1991). One advantage of ANN 
modeling is that it can accommodate multiple input 
variables to predict multiple output variables even 
without prior knowledge of the process relationships 
(Ramesh et al. 1996). 

In recent years, ANNs have been widely used for 
modeling the drying process. Jay and Oliver (1996) 
used ANNs to control the grain drying process. 
Farkas et al. (2000a) examined a physical model and 
an ANN to predict moisture distribution in fixed bed 
grain dryers. Using randomly varying time series for 
training the ANN, they showed that a feedback model 
for input parameters could predict the moisture 
content of the grain layers more accurately than the 
physical model (Farkas et al. 2000b). After testing and 
training several algorithms, Zhang et al. (2002) found 
a 4-layer network with 8 and 5 neurons in its hidden 
layers to be the optimum algorithm to predict several 

drying characteristics including evaporation rate, 
product output rate, kernel cracking percentage, and 
energy consumption in rough rice drying. Cubillos 
and Reyes (2003) indicated that the ANN results 
could be used for the primary design of a dryer and 
selection of the optimum operational conditions. 
An ANN was used to model a hazelnut fixed bed 
dryer assisted with a heat pump (Ceylan and Aktaş 
2008). Relative humidity, drying air temperature, and 
drying time were used as the ANN input parameters, 
and bed moisture content and inlet air velocity were 
the output parameters. Topuz (2010) used ANNs to 
predict the moisture content of agricultural products 
(hazelnut, bean, and chickpea) in fluidized bed 
drying.

Although many researchers have modeled the 
drying process using ANNs, few of them have 
considered the effect of air relative humidity. 
Furthermore, a limited number of studies have 
investigated the performance and process indices of 
grain drying. The main objectives of this study were 
to: 1) develop an appropriate ANN for modeling 
the drying kinetics and predicting the process and 
product parameters of rough rice drying, including 
product output rate, evaporation rate, and kernel 
cracking at various combinations of drying air 
temperature, velocity, and relative humidity; 2) 
determine the sensitivity of the desired ANN model 
to the input variables; and 3) compare the ANN 
approach with the multivariate regression method 
for modeling rough rice drying in a deep bed mode.

Materials and methods
Rough rice, experimental setup, and drying 
experiments
Rough rice of the Sazandegi (medium-grain) variety 
was acquired from the Isfahan Center for Agricultural 
and Natural Resources Research. The samples were 
stored at 4 ± 0.5 °C until the experiments were 
performed. Before the experiments, the samples 
were stored at room temperature for 12 h in order to 
thermally equilibrate them with the environment. To 
determine the initial moisture content, the samples 
were placed in an oven set at 130 °C for 24 h (ASAE 
2001). The initial moisture content of the rough rice 
was determined to be 20.4% (wb).



Artificial neural network modeling of process and product indices in deep bed drying of rough rice 

740

Since the commercial rough rice dryers are 
usually deep bed dryers, the drying experiments 
were performed in deep bed mode (grain column 
height of 20 cm). Figure 1 shows the schematic view 
of the dryer used in the experiments (Tohidi 2010). 
It consists of a power supply system, a fan with air 
pressure of 3.5 kPa and air flow rate of 0.4 m3 s–1, an 
electrical heater constructed of 8 elements with a 
total heat capacity of 5.6 kW, an air supply channel, 
a drying chamber, and the required instruments to 
measure and control the air parameters (temperature, 
relative humidity, and velocity). The specifications of 
the measurement and control instruments are given 
in Table 1.

An ultrasonic humidifying instrument was 
designed and used to change and control the relative 
humidity of the air. The specific purpose of the 
instrument was to create a cold humid area. The 
control of the median temperature during the test 
was possible with an accuracy of ±2% and a linearity 
of ±2% for an operating span of 20%–95% relative 
humidity (RH).

To achieve the desired conditions, the dryer was 
run without the sample for about 20 min before each 
drying experiment. Rough rice samples were then 
placed in the drying chamber of the dryer. The weight 
reduction of the sample was recorded at 2–5 min 
intervals of the drying duration. The final moisture 

Power supply

Inverter

Drying chamber

Digital balance

Heater
Ultrasonic humidi�er

Fan

Figure 1. Schematic view of the dryer used for conducting the experiments.

Table 1. Characteristics of the measurement and control equipment.

Instrument Trademark Properties Uncertainty (%)

Temperature sensor Elimko Input Pt-100R/T Tip
Scale 0–90 °C
Feed 24 V-DC
Output 4–20 mA

0.0238

Digital balance Kern 572-57 Accuracy 0.01 g 1.495

RH sensor Philips H8302 Accuracy 0.01 -------

Hot wire anemometer Lutron AM4204 Velocity 0.2–20 m s–1

Accuracy 0.1 m s–1
0.00195

Inverter Teco 7300 cv Input AC 1-phase 50–60 Hz
Output AC 3-phase 0–650 Hz
Amps 7.5 A

-------
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content of the rough rice was set to be 12% (wb), 
which is usually recommended for proper hulling 
and milling of rice (Brooker et al. 1992).

The drying experiments were carried out at 
different combinations of drying air temperature (7 
levels of 40, 50, 55, 60, 65, 70, and 80 °C), inlet air 
velocity (3 levels of 0.5, 0.8, and 1.1 m s–1), and air 
relative humidity (4 levels of 40%, 50%, 60%, and 
70%). Totally, 72 sets of drying experiments were 
conducted in August and September 2010. 

After the experiments were conducted, 3 important 
drying parameters, including kernel cracking (KC) 
percentage as an indicator of the dried product quality, 
product output rate (POR) as an indicator of the 
dryer working capacity, and evaporation rate (ER) as 
a quality index of the drying kinetics, were calculated 
and measured. To determine KC percentage, 48 h 
after each drying test, 100 kernels of each sample 
were manually husked and the fissured kernels were 
determined using a binocular microscope. The POR 
and ER values were calculated using Eqs. (1) and (2), 
respectively.

                                                                                  (1)

                                                                                   (2)

Here, POR and ER stand for the product output 
rate (kg m–2 s–1) and evaporation rate (g m–2 s–1), 
respectively, and md is the mass of the dried product 
(kg), Ab is the area of the dryer chamber (m–2), t is the 
drying time (s), and mv is the mass of the vaporized 
moisture (g).
Artificial neural network modeling approach
In the present study, 3 networks were used: 1) 
multilayer perceptron (MLP), 2) generalized feed 
forward (GFF), and 3) modular neural network 
(MNN). The MLP network is one of the most useful 
and common neural network architectures, and it 
is appropriate for a variety of applications such as 
prediction and process modeling. An MLP network 
comprises a number of identical units organized in 
layers. The units in each layer are connected to the 
units in the subsequent layer, so that the outputs of 

one layer are regarded as inputs to the next layer. The 
GFF network is a generalization of MLP in which 
connections can jump over one or more layers. Finally, 
the MNN is a combination of several independent 
neural networks (Happel and Murre 1994). More 
specifically, this network consists of n individual 
networks, A1, A2, …, An, n > 1, each of which receives 
input and generates its own output independently. 
There is also an intermediary module that receives 
as input the outputs of the individual networks A1, 
A2, ..., An, n > 1, from which it determines the final 
output of the MNN.

Among the various kinds of activation functions, 
the well-known hyperbolic tangent and sigmoid 
functions, given in Eqs. (3) and (4), respectively, were 
used to achieve the best results for predicting the 
dependent variables. A total of 4 learning algorithms, 
namely step, momentum, conjugate gradient, and 
Levenberg–Marquardt (LM), were also used for 
training the networks.
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Here, m is the number of the neurons in the output 
layer, Wij is the weight of the connections between 
layer i and layer j, Yi is the output of the neurons in 
layer i, and bj is the bias of the neurons in layer j.

Experimental data from drying experiments 
were used to train and test the 3 aforementioned 
artificial neural networks (MLP, GFF, and MNN) for 
predicting rough rice moisture content during the 
drying process and the 3 drying parameters (POR, 
ER, and KC). The data collected from 72 experiments 
were divided into 3 subsets. The first subset was 
used to compute the gradient and learn the network 
weights and biases (the training set). The second 
subset was used to prevent overfitting (the validation 
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set), and the last subset was the test set. In other 
words, the third subset was only used for comparing 
the results of the adopted models, and not for training 
the networks or avoiding overfitting. The dataset was 
initially shuffled and 70%, 15%, and 15% of the total 
dataset was used for training, validating, and testing 
purposes, respectively.

The numbers of neurons in the input and output 
layers depend on the input and output variables, 
respectively. As the moisture content was a time-
dependent variable, 1 and 4 neurons were devoted 
to the output and the input layers, respectively 
(Figure 2a). To predict parameters POR, ER, and 
KC, we used inlet air temperature, inlet air velocity, 

and inlet air relative humidity as the interdependent 
variables. Hence, 1 and 3 neurons were devoted to 
the output and the input layers, respectively (Figure 
2b). The number of neurons in the hidden layers was 
determined by calibration through several runs.

The performance of the models was evaluated 
using 4 criteria, namely mean square error (MSE), 
normalized mean square error (NMSE), mean 
absolute error (MAE), and correlation coefficient (r), 
which are defined by Eqs. (6) through (9), respectively 
(Obe and Shangodoyin 2010).

                                                                                  (6)
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Figure 2. Schematic topology of the neural networks used for predicting a) rough rice 
moisture content (MC) and b) evaporation rate (ER), product output rate 
(POR), and kernel cracking (KC).
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Here, P is the number of output neurons, N is the 
number of exemplars in the dataset, yij is the network 
output for exemplar i at processing element j, and 
dij is the desired output for exemplar i at processing 
element j.

                                                                                  (7)

                                                                                  (8)

Here, xi is the network output and di is the desired 
output.

Although the MSE values indicate the difference 
between the predicted and experimental values, 
this criterion does not determine their direction. 
Therefore, the correlation coefficient (r) was also 
calculated.

                                                                                   (9)

Here, x is the network output, X is the mean of 
the network outputs, d is the desired output, d is the 
mean of the desired outputs, and N is the number 
of exemplars in the dataset. The higher the value 
of r and the lower the values of MSE, NMSE, and 
MAE, the more accurate the developed network 
is. NeuroSolution software was used to model the 
experiments.
Multivariate regression analysis 
Regression analysis is a statistical method that is 
used to study and model the relationship between 
unknown parameters and independent variables in 
a study. In this research, to correlate the dependent 
variables to the independent ones, linear and 
logarithmic regression models were used. The 
stepwise training method was used in SPSS to create 
multivariate regression models. Air temperature, 
velocity, and relative humidity were the independent 

variables and POR, ER, and KC were the dependent 
variables. The validation of the regression models 
was assessed using the coefficient of determination 
(R2) and MSE values.
Sensitivity analysis
The sensitivity analysis process provides valuable 
information about the sensitivity of a developed 
ANN model to the input variables. By identifying the 
effects of input variables on the prediction accuracy 
of the model, less important variables can be removed 
and a simpler network can be obtained. A sensitivity 
coefficient of less than 0.1 for a variable indicates that 
the variable does not have a significant effect on the 
model prediction accuracy and consequently can be 
removed from the input variable set (Hill 1998).

Results
The result showed that among the 3 networks, the 
GFF network with a LM learning algorithm and the 
hyperbolic tangent activation function was the most 
accurate network for predicting rice drying kinetics, 
as well as process and product indices. Moreover, the 
speed of the prediction process was higher for this 
network than for the combination of other networks. 
Table 2 presents the topologies and the performance 
criteria values related to the best artificial neural 
network for predicting moisture content, product 
output rate, evaporation rate, and kernel cracking. It 
is observed that the 4-15-1, 3-4-4-1, 3-7-1, and 3-11-
1 topologies provided the best results, respectively, 
for predicting moisture content, POR, ER, and CK.

Figure 3 shows a typical drying kinetics curve 
(moisture content versus time) at an air temperature 
of 70 °C, air velocity of 0.5 m s–1, and air relative 
humidity of 50%. A comparison between the 
experimental data and the predicted data by the 
developed GFF network indicates that the prediction 
values were very close to the experimental values. 
Figure 4 compares the moisture content values 
obtained by the selected ANN with the experimental 
values randomly selected from the whole dataset.

Table 3 presents the experimental data for POR, 
ER, and KC variables used in training the ANN and 
the predicted values obtained by the ANN. It was 
observed that the predicted values were very close to 
the experimental data.
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The regression models for predicting drying 
indices are given in Table 4. As shown, the logarithmic 
regression equations were more accurate than the 
linear regression equation for predicting ER and 
KC, whereas the linear regression equation provided 
better results for predicting POR. Figures 5–7 
illustrate the comparison between the experimental 
data and the predicted values obtained by the ANN 
and regression models for prediction of POR, ER, 
and KC, respectively.

The sensitivity analysis results showed that 
all of the sensitivity coefficients related to the air 
temperature, air velocity, and air relative humidity 
were higher than 0.1 (Table 5). Therefore, none of 
them could be removed from the input variable set.

Considering the equal importance for the 3 drying 
indices (POR, ER, and KC), the best conditions of 
rough rice drying (maximum system efficiency) 
in terms of air velocity, air relative humidity, and 
air temperature were determined to be 0.5 m s–1, 

Table 2. Topologies and performance criteria values for the selected GFF network to predict moisture content, product 
output rate, evaporation rate, and kernel cracking.

Output variable of the GFF network

Moisture content Product output rate Evaporation rate Kernel cracking

Topology 4-15-1 3-4-4-1 3-7-1 3-11-1

MSE 0.0028 0.0047 0.0047 0.0089

NMSE 0.0291 0.0834 0.0997 0.1181

MAE 0.0118 0.0160 0.0317 0.0306

r 0.991 0.983 0.970 0.963
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Figure 3. Comparison between the experimental moisture 
contents and the predicted values using the GFF 
network at an air temperature of 70 °C, air velocity of 
0.5 m s–1, and air relative humidity of 50%.

Figure 4. Random comparison between the experimental 
moisture contents and the predicted values using the 
selected GFF network.
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Table 3. The experimental data of product output rate, evaporation rate, and kernel cracking 
used for training the ANN, and the predicted values by the best ANN.

Product output rate Evaporation rate Kernel cracking

Experimental Predicted Experimental Predicted Experimental Predicted

4.97 2.42 4.28 4.23 10 13.29

46.00 48.64 0.47 0.47 51 52.04

38.33 40.83 4.39 4.21 46 47.13

40.89 41.05 3.66 4.50 47 45.15

5.07 2.14 3.90 5.45 12 9.08

34.71 31.48 0.48 0.47 44 39.23

11.72 11.52 3.32 3.24 16 18.31

27.05 24.83 1.12 1.16 36 35.11

39.18 40.85 2.54 2.46 44 47.92

52.57 52.45 3.73 3.89 55 52.45

12.26 11.40 5.02 5.32 19 17.74

4.87 2.14 1.17 1.17 9 12.63

30.16 30.23 0.46 0.43 40 39.71

25.20 24.42 2.88 2.92 37 38.41

10.82 9.69 2.4 3.12 14 17.10

17.35 18.60 1.03 1.06 29 26.92

4.97 2.42 1.66 1.76 10 13.29
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Figure 5. Comparison between the experimental and predicted 
product output rate (POR) values using ANN and 
regression methods.

Figure 6. Comparison between the experimental and predicted 
evaporation rate (ER) values using ANN and regression 
methods.
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60%, and 46 °C, respectively. Zhang et al. (2002) 
used multiple-objective programming to show that 
the optimal values for rough rice drying were layer 
thickness of 66 cm, hot airflow rate of 0.3 m s–1, hot 
air temperature of 93.8 °C, and drying time of 23 min.

Discussion
According to the topology of the network for 
predicting moisture content (Table 2), the error 
values increased and the correlation coefficient value 
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Figure 7. Comparison between the experimental and predicted kernel cracking (KC) 
values using ANN and regression methods.

Table 4. Regression models to estimate product output rate (POR), evaporation rate 
(ER), and kernel cracking (KC) as a function of input variables.

Regression equation MSE R2

POR = –0.048 + 0.817 T + 0.100 V – 0.039 RH 0.0136 0.88

log ER = –0.190 + log T + 0.076 log V – 0.031 log RH 0.0133 0.88

log KC = –0.071 + 0.826 log T + 0.084 log V – 0.090 log RH 0.0197 0.84

Table 5. Sensitivity coefficient values for product output rate, evaporation rate, and kernel cracking 
related to various input variables.

Sensitivity coefficient

Input variables Product output rate Evaporation rate Kernel cracking

Air temperature 1.00 1.00 1.00

Air velocity 0.87 0.70 0.82

Air relative humidity 0.14 0.27 0.74
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decreased when increasing the number of hidden 
layers from 15. To predict the product output rate, the 
best topology had 2 hidden layers, but similar to the 
moisture content for kernel cracking and evaporation 
rate, 1 hidden layer resulted in the best network. The 
results also indicated that increasing the number 
of hidden layers and the number of neurons in the 
hidden layer decreased the prediction accuracy.

As shown in Figure 3, the predicted values were 
very close to the measured values. Therefore, it 
is concluded that the GFF network model can be 
used as an appropriate tool to estimate the moisture 
content of rice during the drying process in a deep 
bed mode for drying rough rice.

Figures 5–7 show that compared to the regression 
method, the ANN approach provided more accurate 
predicted values in relation to the experimental 
data for all drying indices. This could be due to the 
existence of nonlinear relationships between the 
variables, which is considered in ANN modeling. 

Erenturk et al. (2004) also concluded that a neural 
network represented the drying characteristics 
of Echinacea angustifolia better than regression 
models. Therefore, the ANN models can estimate 
the parameters with an acceptable accuracy, and 
consequently can be an appropriate substitute for 
regression methods in modeling rough rice drying.

According to Hill’s rule, air temperature, air 
velocity, and air relative humidity had a significant 
influence on the output variables. However, among 
the input parameters, air temperature and air relative 
humidity showed the greatest and the least effect 
on the network outputs, respectively. The lowest 
sensitivity coefficient (0.14) belonged to the effect of 
air relative humidity on POR.
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